Central Composite Response Surface Method

From ReliaWiki
Jump to navigation Jump to search
DOE Reference Examples Banner.png


Central Composite Response Surface Method

This example validates the calculation of the central composite response surface method in DOE++.

Reference Case

The data are from Example 11-1 on page 431 in the book Design and Analysis of Experiments by Douglas C. Montgomery, John Wiley & Sons, 2001.

Data

Natural Variables Coded Variables Responses
A (time) B (temperature) A B Y (yield)
8076.580 170 -1 -1 76.5
80 180 -1 1 77
90 170 1 -1 78
90 180 1 1 79.5
85 175 0 0 79.9
85 175 0 0 80.3
85 175 0 0 80.0
85 175 0 0 79.7
85 175 0 0 79.8
92.07 175 1.414 0 78.4
77.93 175 -1.414 0 75.6
85 182.07 0 1.414 78.5
85 167.93 0 -1.414 77

Result

From the book, the ANOVA table is:

Source Sum of Squares (Partial SS) DF Mean Square F value Prob > F
Model 28.25 5 5.65 79.85 <0.0001
A 7.92 1 7.92 111.93 <0.0001
B 2.12 1 2.12 30.01 0.0009
A∙A 13.18 1 13.18 186.22 <0.0001
B∙B 6.97 1 6.97 98.56 <0.0001
A∙B 0.25 1 0.25 3.53 0.1022
Residual 0.5 7 0.071
Lack of Fit 0.28 3 0.094 1.78 0.2897
Pure Error 0.21 4 0.053
Total 28.74 12

The final equation in terms of the actual values of these two factors is:


[math]\begin{align} Yield= -1430.52285+7.80749 * time + 13.27053 * temp-0.05505 * time^2 - 0.04005 * temp^2 + 0.01 * time * temp \end{align}[/math]


The maximum yield is achieved at 80.21 with time = 87 minutes and temperature = 176.5 F.


Results in DOE++

The software results match the book results. The ANOVA table is:

Composite anova.png

The final equation in terms of the actual factors is:

Composite final.png

The maximum yield is achieved at 80.21, as shown in the optimization plot. The values at the red dash line are the optimal values for factor A and factor B. The blue line corresponds to the maximum Y value.

Composite plot.png