Duane Model Examples

From ReliaWiki

Jump to: navigation, search


These examples appear in the Reliability Growth and Repairable System Analysis Reference book.


Parameter Estimation Examples

Graphical Approach

A complex system's reliability growth is being monitored and the data set is given in the table below.

Cumulative Test Hours and the Corresponding Observed Failures for the Complex System
Point Number Cumulative Test Time(hours) Cumulative Failures Cumulative MTBF(hours) Instantaneous MTBF(hours)
1200 2100.0100
2400 3133.0200
3600 4150.0200
43,00011273.0342.8

Do the following:

  1. Plot the cumulative MTBF growth curve.
  2. Write the equation of this growth curve.
  3. Write the equation of the instantaneous MTBF growth model.
  4. Plot the instantaneous MTBF growth curve.

Solution

  1. Given the data in the second and third columns of the above table, the cumulative MTBF, , values are calculated in the fourth column. The information in the second and fourth columns are then plotted. The first figure below shows the cumulative MTBF while the second figure below shows the instantaneous MTBF. It can be seen that a straight line represents the MTBF growth very well on log-log scales.
    Cumulative MTBF plot
    Instantaneous MTBF plot

    By changing the x-axis scaling, you are able to extend the line to . You can get the value of from the graph by positioning the cursor at the point where the line meets the y-axis. Then read the value of the y-coordinate position at the bottom left corner. In this case, is approximately 14 hours. The next figure illustrates this.

    Cumulative MTBF plot for at

    Another way of determining is to calculate by using two points on the fitted straight line and substituting the corresponding and values into:

    Then substitute this and choose a set of values for and into the cumulative MTBF equation, , and solve for . The slope of the line, , may also be found from the linearized form of the cumulative MTBF equation, or :

    Using the cumulative MTBF plot for the example, at hours, hours, and hours, hours. From the cumulative MTBF plot for hours when , substituting the first set of values, hours and , into the equation yields:


  2. Substituting the second set of values, hours and into the equation yields:
    Averaging these two values yields a better estimate of .
  3. Now the equation for the cumulative MTBF growth curve is:
  4. Using the following equation for the instantaneous MTBF, or
    The equation for the instantaneous MTBF growth curve is:
    The above equation is plotted in the instantaneous MTBF plot shown in the example and in the cumulative and instantaneous MTBF vs. Time plot. In the following figure, you can see that a parallel shift upward of the cumulative MTBF, , line by a distance of gives the instantaneous MTBF, or the , line.
    Cumulative and Instantaneous MTBF vs. Time plot.
    Cumulative and Instantaneous MTBF vs. Time plot


Mathematical Approach

Example 1

Using the same data set from the graphical approach example, estimate the parameters of the MTBF model using least squares.


Solution

From the data table:

Obtain the value of from the least squares analysis, or:

Obtain the value from the least squares analysis, or:

Therefore, the cumulative MTBF becomes:

The equation for the instantaneous MTBF growth curve is:


Example 2

For the data given in columns 1 and 2 of the following table, estimate the Duane parameters using least squares.

Failure Times Data
(1)Failure Number (2)Failure Time(hours) (3) (4) (5) (6) (7)
19.2 2.219 4.925 9.2002.2194.925
2253.219 10.36112.5002.5268.130
361.54.119 16.96620.5003.02012.441
4260 5.561 30.92165.0004.17423.212
5300 5.704 32.53360.0004.09423.353
67106.565 43.103118.3334.77431.339
79166.820 46.513130.8574.87433.241
810106.918 47.855126.2504.83833.470
912207.107 50.504135.5564.90934.889
1025307.83661.402253.0005.53343.359
1133508.11765.881304.5455.71946.418
1242008.34369.603350.0005.85848.872
1344108.39270.419339.2315.82748.895
1449908.51572.508356.4295.87650.036
1555708.62574.393371.3335.91751.036
1683109.02581.455519.3756.25356.431
1785309.05181.927501.7656.21856.282
1892009.12783.301511.1116.23756.921
19105009.25985.731552.6326.31558.469
20121009.40188.378605.0006.40560.215
21134009.50390.307638.0956.45861.375
22146009.58991.945663.6366.49862.305
23220009.99999.976956.5226.86368.625
Sum =173.0131400.9087600.870121.406974.242

Solution

To estimate the parameters using least squares, the values in columns 3, 4, 5, 6 and 7 are calculated. The cumulative MTBF, , is calculated by dividing the failure time by the failure number. The value of is:

The estimator of is estimated to be:

Therefore, the cumulative MTBF becomes:

Using the equation for the instantaneous MTBF growth curve,


Example 3

For the data given in the following table, estimate the Duane parameters using least squares.

Multiple Systems (Known Operating Times) Data}
Run Number Failed Unit Test Time 1 Test Time 2 Cumulative Time
11 0.22.02.2
221.72.94.6
324.55.29.7
425.89.114.9
5217.39.226.5
6229.324.153.4
7136.561.197.6
8246.369.6115.9
9163.678.1141.7
10264.485.4149.8
11174.393.6167.9
121106.6103209.6
132195.2117312.2
142235.1134.3369.4
151248.7150.2398.9
162256.8164.6421.4
172261.1174.3435.4
182299.4193.2492.6
191305.3234.2539.5
201326.9257.3584.2
211339.2290.2629.4
221366.1293.1659.2
232466.4316.4782.8
241504373.2877.2
251510375.1885.1
262543.2386.1929.3
272635.4453.31088.7
281641.2485.81127
292755.8573.61329.4

Solution

The solution to this example follows the same procedure as the previous example. Therefore, from the table shown above:

For least squares, the value of is:

The value of the estimator is:

Therefore, the cumulative MTBF is:

Using the equation for the instantaneous MTBF growth,


Confidence Bounds Example

Using the values of and estimated from the least squares analysis in Least Squares Example 2:

Calculate the 90% confidence bounds for the following:

  1. The parameters and .
  2. The cumulative and instantaneous failure intensity.
  3. The cumulative and instantaneous MTBF.

Solution

  1. Use the values of and estimated from the least squares analysis. Then:
    Thus, the 90% confidence bounds on parameter are:
    And 90% confidence bounds on parameter are:
  2. The cumulative failure intensity is:
    And the instantaneous failure intensity is equal to:
    So, at the 90% confidence level and for hours, the confidence bounds on cumulative failure intensity are:
    For the instantaneous failure intensity:
    The following figures show the graphs of the cumulative and instantaneous failure intensity. Both are plotted with confidence bounds.
  3. The cumulative MTBF is:
    And the instantaneous MTBF is:
    So, at 90% confidence level and for hours, the confidence bounds on the cumulative MTBF are:
    The confidence bounds for the instantaneous MTBF are:
    The figure below displays the cumulative MTBF.

    The next figure displays the instantaneous MTBF. Both are plotted with confidence bounds.


Failure Times Data Example

A prototype of a system was tested with design changes incorporated during the test. A total of 12 failures occurred. The data set is given in the following table.

Developmental Test Data
Failure Number Cumulative Test Time(hours)
1 80
2 175
3 265
4 400
5 590
6 1100
7 1650
8 2010
9 2400
10 3380
11 5100
12 6400

Do the following:

  1. Estimate the Duane parameters.
  2. Plot the cumulative and instantaneous MTBF curves.
  3. How many cumulative test and development hours are required to meet an instantaneous MTBF goal of 500 hours?
  4. How many cumulative test and development hours are required to meet a cumulative MTBF goal of 500 hours?

Solution

  1. The next figure shows the data entered into RGA along with the estimated Duane parameters.
  2. The following figure shows the cumulative and instantaneous MTBF curves.
  3. The next figure shows the cumulative test and development hours needed for an instantaneous MTBF goal of 500 hours.
  4. The figure below shows the cumulative test and development hours needed for a cumulative MTBF goal of 500 hours.


Discrete Sequential Data Example

Given the sequential success/failure data in the table below, do the following:

  1. Estimate the Duane parameters.
  2. What is the instantaneous Reliability at the end of the test?
  3. How many additional test runs with a one-sided 90% confidence level are required to meet an instantaneous Reliability goal of 80%?
Sequential Data
Run Number Result
1 F
2 F
3 S
4 S
5 S
6 F
7 S
8 F
9 F
10 S
11 S
12 S
13 F
14 S
15 S
16 S
17 S
18 S
19 S
20 S

Solution

  1. The following figure shows the data set entered into RGA along with the estimated Duane parameters.
  2. The Reliability at the end of the test is equal to 78.22%. Note that this is the DRel that is shown in the control panel in the above figure.
  3. The figure below shows the number of test runs with both one-sided confidence bounds at 90% confidence level to achieve an instantaneous Reliability of 80%. Therefore, the number of additional test runs required with a 90% confidence level is equal to test runs.
Personal tools
ReliaWiki.org
Create a book