1P-Exponential MLE Solution with Right Censored Data
From ReliaWiki
Jump to navigation
Jump to search
1P-Exponential MLE Solution with Right Censored Data |
This example validates the calculations for the MLE solution and Fisher Matrix bound for a 1-parameter exponential distribution with right censored and complete failure data in Weibull++ standard folios.
Reference Case
The formulas on page 166 in the book Statistical Methods for Reliability Data by Dr. Meeker and Dr. Escobar, John Wiley & Sons, 1998.
- [math]\hat{\theta}=\frac{TTT}{r}\ \ and\ \ se_{\hat{\theta}} = \frac{\hat{\theta}}{\sqrt{r}}\,\![/math]
where TTT is the total test time and r is the number of failures.
Data
Number in State | State F or S | Time to Failure |
---|---|---|
1 | F | 16 |
1 | F | 34 |
1 | F | 53 |
1 | F | 75 |
1 | F | 93 |
1 | F | 120 |
4 | S | 200 |
Result
- [math]\begin{align} \hat{\theta} =& \frac{TTT}{r} = \frac{16+34+53+75+93+120+4\times 200}{6} = \frac{1191}{6} = 198.5 \\ \\ se_{\hat{\theta}} =& \frac{\theta}{\sqrt{r}} = \frac{198.5}{\sqrt{6}} = 81.037 \\ \end{align}\,\![/math]
So the variance of [math] \hat{\theta}\,\! [/math] is 6567.04
Results in Weibull++